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CONSTRUCTING NONRESIDUES IN FINITE FIELDS 
AND THE EXTENDED RIEMANN HYPOTHESIS 

JOHANNES BUCHMANN AND VICTOR SHOUP 

ABSTRACT. We present a new deterministic algorithm for the problem of con- 
structing kth power nonresidues in finite fields Fpnv where p is prime and k is 
a prime divisor of pf - 1. We prove under the assumption of the Extended Rie- 
mann Hypothesis (ERH), that for fixed n and p -* oo, our algorithm runs in 
polynomial time. Unlike other deterministic algorithms for this problem, this 
polynomial-time bound holds even if k is exponentially large. More generally, 
assuming the ERH, in time (nlogp)o(n) we can construct a set of elements 
that generates the multiplicative group Fp. 

An extended abstract of this paper appeared in Proc. 23rd Ann. ACM 
Symp. on Theory of Computing, 1991. 

1. INTRODUCTION 

Consider the following problem: given a finite field Fpnv where p is prime, and a 
prime divisor k of pn - 1, construct a kth power nonresidue in Fpnv i.e., an element 
that is not a perfect kth power of any other element in Fpn. 

The problem of constructing nonresidues lies at the heart of many deterministic 
algorithms for fundamental problems in finite fields. For example, the problem of 
constructing an irreducible polynomial of given degree over a finite field can be re- 
duced in deterministic polynomial time to the problem of constructing nonresidues 
(see [22]). Furthermore, many deterministic algorithms for various special cases of 
the problem of factoring polynomials over finite fields can be viewed as deterministic 
reductions to the problem of constructing nonresidues (see [2, 6, 12, 19, 20, 13]). 

We are therefore interested in the deterministic complexity of constructing non- 
residues. The problem of testing whether a given ar in Fpn is a kth power nonresidue 
has a trivial solution: just test if ae(p-1)/k $/ 1. If probabilistic algorithms are al- 
lowed, then the problem of constructing nonresidues also has a trivial solution: just 
choose ar in Fpn at random and test whether it is a kth power nonresidue. However, 
the deterministic complexity of constructing nonresidues is currently unknown, even 
under the assumption of the Extended Riemann Hypothesis (ERH). We shall show 
that for any fixed value of n, this problem can be solved in deterministic polynomial 
time assuming the ERH. 

Our main result is as follows. 
There exists a deterministic algorithm with the following properties. It takes as 

input a prime p and a positive integer n, and outputs a model for the finite field 
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Fpn together with a set S C Fang Under the assumption of the ERH, the running 
time of the algorithm is (n logp)O(n) and S is a generating set for Fpn . 

By a model for Fpn we mean an Fp-basis for Fpn, together with information 
that tells us how to express the product of any two basis elements in this basis. 
By a generating set for Fpn we mean a set of elements with the property that 
every element in the multiplicative group Fpn can be written as a power product 
of elements in this set. Notice that both the running time and correctness of this 
algorithm depend on the ERH. 

Since isomorphisms between finite fields can be computed in deterministic poly- 
nomial time (as was proved in [15] without any hypothesis), we can construct a 
generating set for Fpn in any given model of Fpn in time (n logp)0('), assuming 
the ERH. Since a generating set always contains a kth power nonresidue, we can 
construct nonresidues within the same time bound. 

The following conjecture seems plausible: there exists an absolute constant C 
such that for any basis 01, . .. , an for Fpn over Fp, the set of all elements E ai0d E 
F>1 with max IaxI < (n + logp)C forms a generating set for Fpn 

If this conjecture were true, then we could very simply enumerate all of the 
elements in this generating set in time (n logp)0(n). However, it is not known how 
to prove such a conjecture, even assuming the ERH. 

We are able to prove the following, somewhat weaker, statement. 
Assume the ERH. There exist absolute constants C and D, and a deterministic 

algorithm with the following properties. The algorithm takes as input a prime p and 
a positive integer n. It runs in time (n log p)0 (1), and produces as output a model 
for Fpn for which the associated basis 01,... , On has the property that the set of all 
elements a, ai 0E F n with max Iai I < CnDn (logp)max(n-1,2) forms a generating 
set for Fpn . 

Using this result, we can very easily enumerate all of the elements in this gen- 
erating set in time (n logp)O(n 2). However, to obtain a running time bound of the 
form (n logp)O(), we need to use an algorithm that is a bit more complicated. 

Previous Work. There is a deterministic algorithm that will construct a model for 
Fpn together with a generating set for Fpn in time (pn)0(1). Indeed, given p and n, 
we can construct an irreducible polynomial f of degree n over Fp deterministically 
in time (pn)0(1), using the algorithm in [23]. This allows us to represent Fpn as 
Fp[x]/(f). Then, with the help of character sum bounds appearing, for example, 
in [25], it follows by a standard argument that the set of images in F[x] /(f) of 
all monic polynomials of degree up to 2 log n/ logp + 1 forms a generating set, and 
we can clearly enumerate this set in time (np)0(1). Thus, for small p the problem 
of constructing a generating set can be solved in deterministic polynomial time 
unconditionally. 

Ankeny's Theorem [3] as sharpened in [4] states that, under the assumption of 
the ERH, the set of positive integers less than 2(log p)2 generates F>. This result 
was generalized to n = 2 in [25], where it is'shown that, assuming the ERH, we 
can construct in deterministic polynomial time a model for Fp2 together with a 
generating set for F>2. Thus, for n = 1 and n = 2, the problem of constructing a 
generating set can be solved in deterministic polynomial time under the ERH. 

With the ERH assumed, the algorithm of Huang [13] as generalized by Evdoki- 
mov [11] allows us to deterministically construct a kth power nonresidue in Fpn 
in time kA . (nlogp)0(1) for some positive constant A. The precise value of A is 
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not worked out in [13] or [11], but is certainly at least 1. So for k = (nlogp)0(1) 
the problem of constructing kth power nonresidues can be solved in deterministic 
polynomial time under the ERH. 

Related to the problem of constructing a generating set is that of searching for 
a primitive root, i.e., a single element that generates Fes. It is not known how 
to efficiently test (either deterministically or probabilistically) if a given element 
in Fpn is a primitive root (unless the factorization of pn _ 1 is known); however, 
one can still ask the question of how to deterministically enumerate a set that is 
guaranteed to contain a primitive root. 

It is shown in [25] that for any irreducible polynomial f E Fp [X] of degree n, 
there exists a monic polynomial g E Fp [X] (itself irreducible) of degree at most 
1 + O(log n/ logp) such that (g mod f) is a primitive root for Fp [X] /(f) _ Fpn. SO 
for small p we can search for a primitive root in polynomial time. 

It was shown by Wang [26] that under the ERH, for any p there is a positive 
integer that is bounded by (logp)0(1) whose image in Fp is a primitive root. In 
[25], it is shown that, assuming the ERH, we can construct in time (logp)O(l) a 
model for Fp2 that has an Fp-basis for which there exists a primitive root for Fp2 
whose coordinates in this basis are bounded in absolute value by (logp)O(l). 

So for n = 1 and n = 2, we can search for a primitive root in polynomial time, 
assuming the ERH. Unfortunately, it does not seem that the techniques of the 
present paper can extend these results, even to Fp3. 

We mention also the recent result of Perel'muter and Shparlinsky [17] which 
states that for any n > 1 and c > 0, there exists a po, depending on n and c, such 
that for all primes p > po and any ar E Fpn of degree n over Fp, there exists a 
nonnegative integer t < pl/2+E with ar + t a primitive root for Fen. 

Applications. We mention three applications of our main result. In these appli- 
cations, n is a fixed positive integer, and we assume the ERH. 

1. Taking kth roots in Fpn. Combining our result with the algorithms in [2], 
[13] and [18], we can take kth roots in Fpn in deterministic time k times a 
polynomial in the input size. 

2. Factoring polynomials over Fp. Combining our result with techniques in [24], 
[6] and [7], we can factor polynomials over Fp in deterministic time k times 
a polynomial in the input size, where k is the largest prime dividing Dn(P), 
and (n is the nth cyclotomic polynomial.. 

3. Constructing primitive roots in Fen. Our result implies that, given the prime 
factorization of pn _ 1, we can construct a primitive root for Fpn in determin- 
istic polynomial time. 

Previous to this work, these statements had been proven only for the special 
cases n = 1 and n = 2. 

Overview. If n = 1 or p I n (and so in particular p < n), the problem of con- 
structing a generating set can be solved by results mentioned previously, so we will 
assume that n > 1 and pin. 

In ?2, we describe our model for Fpn and how to construct it. We represent 
Fpn as O/pO, where 0 is the ring of integers of a certain number field K, which 
is a Galois extension of Q of degree n contained in R. The constructions in this 
section rely on the ERH. Each element of 0 is represented as a coordinate vector, 
contained in Znh, with respect to a certain integral basis. 
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Any element ae E K corresponds to a conjugate vector, contained in R' , whose 
components consist of the images of ar under each of the n automorphisms on K. 
In ?3, we discuss the relationship between coordinate and conjugate vectors. 

In ?4, we show that there is a set of elements of 0 whose conjugate vectors lie 
in a certain geometrically defined region of R' and whose images in O/pO form a 
generating set. This relies on the ERH. 

In ?5, we use the results of ?3 to derive an algorithm that enumerates all of the 
coordinate vectors of the elements of 0 whose conjugate vectors lie in the region 
of R' given in ?4, and thus enumerates a generating set. 

In ?6, we briefly indicate an alternative method for constructing a generating 
set, also based on the methods of ??3 and 4, which is faster, but much less elegant 
and also less space-efficient. 

Before continuing, we define some terms. 
Let R C S be rings, where S is a free R-module with basis sl,... I ,. Then by 

a multiplication table for this basis we mean a collection {aijk 1 < i, j, k < m} of 
m3 elements in R such that for 1 < i, j < m 

m 

S =E aijk Sk - 

k=1 

For a finite field FpI where p is prime, by a model for this field we mean a 
multiplication table for some Fp-basis for Fpn. Moreover, the entries in this table 
are integers representing residue classes modulo p. This definition of a model for a 
finite field comes from [15] (in that paper the term "explicit data" is used, rather 
than "model"). 

By the ERH we mean the following assertion: the Dedekind zeta-function of any 
number field has no zeros in the half-plane Re(s) > 1/2. We refer the reader to [4] 
for more on the ERH. 

All statements of running times in this paper are in terms of bit operations. 

2. CONSTRUCTING A MODEL 

We now describe the model for Fpn that we will use in the rest of the paper. 
If the ERH is true, this model can be quickly constructed, and it will also enjoy 
certain properties that will be exploited later. 

Fact 2.1. Let p be a prime not dividing n. Let q be the least prime satisfying the 
conditions 

(2.1) q 1_ (mod 2n), 

and 

(2.2) (q 1, 

where f is the multiplicative order of p modulo q. Then, such a q exists, and if the 
ERH is true, 

(2.3) q = O(n4(log(np))2). 

Proof. This is proved in [1]. D-1 

Let q be defined as in Fact 2.1, and let L = Q((), where ( is a complex prim- 
itive qth root of unity. Then L is a cyclic extension of Q of degree q - 1. By 
(2.1), L contains a unique subfield K of degree n over Q. Let f = [L : K] = 
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(q - 1)/n. Moreover, f is even, and so K is a subfield of the real numbers (this will 
be technically convenient, but is not strictly necessary). 

Let A denote the absolute value of the discriminant of K. Then it is known that 
A = qn- 

Let 0 be the ring of algebraic integers in K. Condition (2.2) means that pO is 
a prime ideal in 0. Thus 0/pG is a finite field of order pn. 

We denote by a - Zo the residue class map from 0 to 0/pO = 0. 
Let U = 0*, the group of units of 0. 
Let TL/K be the trace from L to K, and let w = TL/K(Q). Then K = Q(w). The 

Galois group G(K/Q) is cyclic of order n, and so is isomorphic to the additive group 
of Z/nZ. For a residue class (i mod n), we denote the corresponding automorphism 
by xF-Ix(i). The set 

-J {). .. ) (n-1)} 

is an integral basis for 0. Let M be the multiplication table for this basis. 
We shall take as our model of Fpn the multiplication table M, obtained by 

reducing the entries of M module p. 
Subsequent algorithms will take as input the following data describing the field 

K: 

(2.4) the prime q, and the multiplication table M. 

Fact 2.2. The entries in M are bounded by AOM1) in absolute value. Furthermore, 
there is an algorithm that takes as input p and n as in Fact 2.1, and produces 
as output the data (2.4) in time q (log A)0(1), which is (nlogp)0(1) under the 
assumption of the ERH. 

Proof. For a proof of this, see [5]. 0l 

3. THE DUAL BASIS 

An element a E 0 is represented by the coordinate vector (a., * , an-l) E Zn 
where a = Z? aiw(). Corresponding to a is its conjugate vector (ao4), ... , a(n-1)) 
E Rn. The purpose of this section is to relate coordinate and conjugate vectors. 
To this end, we use the notion of the dual basis. 

For any Q-basis 01 ... , On for K, its dual basis O*,... , On E K is determined by 
the relations 

TK/Q(0i0*){ 1 ifij-, 

where i and j each run from 1 to n. 
The next theorem states some properties of the dual basis of Q that will be 

needed later: first, it gives an explicit formula for the dual basis; second, it gives an 
explicit linear transformation on Rn which sends conjugate vectors to coordinate 
vectors; and third, it shows that this linear transformation does not increase the 
max-norm of a vector. Before stating the theorem, we need some notation. For a 
vector x E Rn, x = (xi, ... , n) T, let 

(lxii = max jxiI 
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be the max-norm of x. For a matrix M E R' Xn , let 

J1M1j = sup 11MX 

If M = (mij), then 

1IM11 = max Imij 1. 
J 

Theorem 3.1. 1. Let 

w-e 
q 

Then A(0,... , A(n-1) is the dual basis of w(), ... (n-). 
2. Let A E RnXn be the matrix 

AM0 A(') ... A(n-2) A(n-l) 

A1() A(2) ... A(n-1) AM0) 
A =I 

A\(n-1) AM(0 ... A\(n-3) A\(n-2) 

For any ae E K expressed as 

n-1 

= E aiw(') (ai E 
i=O 

we have 
/ a(0) ao 

A (1) a, 

(nn-1) 

3. Let A be the matrix defined above. Then 

IIAII = 1. 

Proof. Recall that L = Q(i), where ( is a primitive qth root of unity. 
First, we claim that for 0 < i <n - 1 

(3.1) TK/Q( W(i)) 
q - i if i 

= 
0# 

To prove this, we use the following two easily derived facts: 

(3.2) TK/Q(a) = .1TL/Q(a) for ae E K, 

(3.3) TL/Q(k) ={q- 1 if k-Omod q, 
(3 3) TL/Q (( ) { _-1 otherwise. 

Now, let H be the subgroup of order f in Z*. Then 

= q3 
hEH 
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and so 

* .Jg ~h) = A '-h 

hEH 
h'EHI 

where H' is a coset of H in Z*. If i = 0, then H' = H and h'-h _ 0 (mod q) for 
exactly f pairs (h, h'); otherwise, h' - h 0 0 (mod q) for all pairs (h, h'). One then 
obtains (3.1) from (3.2), (3.3), and a simple calculation. 

Next, we set A = (w - 1)/q, and show that AM,- , A('-') is dual to (?),.... 
AJ~n-l) It will suffice to show that for 0 < i <n - 1 

(3.4) TK/Q(A.w(i))={ 1 ifi=0, 

To prove (3.4), rewrite the left-hand side as 

q-1 [TK/Q (w (i)) - iTK/Q(wi)])Jv 

and then (3.4) follows from a simple calculation, making use of (3.1) and the fact 
that TK/Q(w) = -1. 

This proves assertion (1) of the theorem. 
Now let ar E K be expressed as 

n-1 

oa = E aiw(i) (ai E ) 
i=O 

Then for 0 < i < n - 1, we have 
n-1 

E Z (i+j) a( ) = TK/Q (A)(i) a) 
j=O 

n-1 

= E ajTK/,Q (,PiG,() ) 
j=O 

- ai. 

This proves assertion (2) of the theorem. 
To prove assertion (3) of the theorem, first note that for 0 < i < n, w(i) is a real 

number, and as it is a sum of f distinct roots of unity, w(i) < f. Thus, A) < 0, and 
so it follows that 

jJAJI E Jx(i) I - 5 E (i) = -TK/Q (A). 
O<i<n O<i<n 

It is easily seen that the trace TK/Q(A) is -1, and so jJAj = 1. E 

4. A GEOMETRIC THEOREM 

In this section, assuming the ERH, we show that the images of elements in 0 

whose conjugate vectors lie in a certain geometrically defined region of Rn generate 
the group (O)* 

Let n = 12(log(A2pn))2, and define 

O(P) = O\pO. 

The main theorem of this section is the following. 
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Theorem 4.1. Assume the ERH. 
1. Let 

n-1 

T, = {a E f(p) Jl max(1, la(')j) < A}l 
i=O 

and 

T2 = {a E O(P) max la(' ? (IA)l/nI}. 
O<i<n 

Then the image of T1 U T2 in (0)* is a generating set. 
2. Let 

T3= { aiw() E O(P) : max jaiI < max(A 1/2, (KA)1/n)1}. 

Then the image of T3 in (0)* is a generating set. 

The second statement of the theorem immediately gives us a trivial algo- 

rithm for enumerating a generating set for (0)*: just list all elements in 0 

of the form Ei ai(i), where each ai is an integer bounded in absolute value 

by max(Al/2, (K/A)l/n). The quantity max(Al/2, (K/A)l/n) is bounded by 

Cn Dn(logp)max(n-1,2) for constants C and D. 

While this is a very simple algorithm, its running time is 

(nlogp)O(n2), 

which is not of the desired form (n logp)O(n). In the next section, we shall use 

the first statement of Theorem 4.1 to obtain an algorithm that does run in time 

(n log p) 
0 

(n). 

To prove this theorem, we require some facts relating to the ray class group and 

to the theory of reduced ideals. 

The ray class group. We recall some definitions and facts concerning the ray 

class group mod p; we refer the reader to [14, ?4.1] for background. We denote by 

I the group of nonzero (fractional) ideals in K, and i: K* - I is the map that 

sends ar E K* to the principal ideal oaO. We define 

K(P) = {a/b:a,bEO(P)}, 

K(Pvl) = {a/b:a,bEO(P), abmodp}. 

The domain of the residue class map 0 -* O/pO extends in a canonical way 

from 0 to K(P). 
We let I(P) denote the subgroup of I consisting of those ideals that are prime to 

p. The quotient group 1(P)/i(K(P1)) is a finite group called the ray class group of 
Kmodp. 

We are mainly interested in the subgroup i(K(P))/i(K(P'1)). The connection 

between this group and the group (0)* is given by the following easily derived fact. 

Recall that U denotes the group of units in 0. 

Fact 4.2. The map 

i(K(P)h ) with (k)e*e U1 

is a surJecti've group homomorphism with kernel i(K(Av1)). 
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We will use the following fact, which requires the assumption of the ERH. For 
an ideal A, N(A) denotes its norm. Let n be as defined at the beginning of this 
section. 

Fact 4.3. Under the ERH, the group I(P)/i(K(P l)) is generated by the images of 
those prime ideals P E I(P) with N(P) < I. 

Proof. This is Theorem 4 in [4], specialized to our situation. E 

Reduced ideals. We need to make use of the theory of reduced ideals, as described 
in [8]. Let A be a fractional ideal in K. A nonzero element ar E A is called a 
minimum of A if 

{3 E A: lo(') < la(')I for 0 < i < n} = {0}. 

The ideal A is called reduced if 1 is a minimum of A. 
Every ideal A contains a minimum, since, e.g., any nonzero element in A of 

minimal norm is a minimum of A. If ae is a minimum of A, then the ideal oa-A is 
reduced. Therefore, every ideal class (in the ordinary class group I/i(K*)) contains 
a reduced ideal. 

Two minima ai and a2 of A are called neighbors if 

{3 E A: lj(i)I < max(loa()I, loa()j) for 0 < i < n} = {0}. 

If A is a reduced ideal, and ae is a neighbor of 1 in A, then the reduced ideal oa-A 
is called a neighbor of A. This neighbor relation is easily seen to be symmetric, 
and we write A1NA2 when Al and A2 are neighbors. The symbol N* denotes the 
transitive closure of the neighbor relation. 

Fact 4.4. 1. For two reduced ideals Al and A2, we have AjN*A2 if and only if 
Al and A2 belong to the same ideal class. 

2. For any ideal class, consider the set S of elements in K that are neighbors 
of 1 in some reduced ideal in the class. Then the -subgroup of K* generated by S 
contains the unit group U. 

3. The number of reduced ideals in any one ideal class is bounded by 20(n)R, 
where R is the regulator of K. 

4. If a is a minimum of an ideal A, then the number of /3 E A that are neighbors 
of a is bounded by (log A\)O(n). 

Proof. These assertions are proved in [8] and [9]. 0 

Lemma 4.5. 1. If A is a reduced ideal, then A is prime to p. 
2. If A is an ideal that is prime to p, and a is a minimum of A, then ae is prime 

to p. 

Proof. Recall that p is a rational prime that is inert in K. To prove the first 
assertion, suppose A is a reduced ideal such that A = peB, where e /& 0 and B is 
prime to p. Then pe E A, and since 1 E A, we must have e < 0. However, this 
contradicts the fact that 1 is a minimum of A. 

The second assertion follows from the first, since a-'A is reduced. LI 

Fact 4.6. Let G be a group, P a set of generators for G, and H a subgroup of G. 
Let F be a subset of G such that G = FH. Then H is generated by its intersection 
with F-1PF = {x-1yz: x, z E F, y E P}. 

Proof. This is Lemma 6.3 in [16]. 0 
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Theorem 4.7. Assume the ERH. Let S1 be the set of all a E K such that ae is a 
neighbor of 1 in some reduced ideal. Let Ai,-.. , Ah be a set of ideals in I(P) that 
form a complete system of representatives for the class group, and let T be the set 
consisting of all prime ideals P E I(P) with N(P) < a, together with 0. Let S2 be 
any set of elements in K obtained by choosing, for each 1 < i < h and for each 
P E T, a minimum of the ideal Ai . P. Then each element of Si U S2 is prime to 
p, and its image in (O)* is a generating set. 

Proof. First of all, the assertion that the elements of S1 U S2 are prime to p follows 
immediately from Lemma 4.5. 

To prove the theorem, we shall apply Fact 4.6 with G = I(P)/i(K(P'1)) and H 
i(K(P))/i(K(P 1)). By Fact 4.3 the set P C G consisting of the images in G of the 
prime ideals P E I(P) with N(P) < K is a set of generators for G. Furthermore, the 
set F c G consisting of the images of the ideals Al,. .. ., Ah satisfies the property 
G = FH. By Fact 4.6, the group H is generated by the images of those principal 
ideals oaO that can be written as 

(4.1) oO = AiPA-1, 

where 1 < i, j < h and P is a prime ideal in T. Let ,3 E S2 be a minimum of PAi 
and -y E S2 be a minimum of Aj, so that /3-1PAi and -y-1Aj are reduced ideals 
belonging to the same ideal class. By Fact 4.4(1) there exists an element 6 E K 
that can be expressed as a power product of elements in Si such that 

(4.2) f-3PAi = f-1Aj. 

Combining (4.1) and (4.2), we obtain 

aO = 310. 

Thus, the image of the set Si U S2 in H is a generating set. From Fact 4.2, it follows 
that the image of Si U S2 U U in (0)* is a generating set. But by Fact 4.4(2), U is 
already generated by Si, and so the image of Si US2 in (0)* is already a generating 
set. ? 

Proof of Theorem 4.1. For ae E K, let 
n-1 

M (a) = fj max~l loa) 
i=o 

This quantity is sometimes called the measure of ae. Consider any reduced ideal A. 
Since 1 E A it follows that A is of the form A = B-1, where B is an integral ideal. 
Furthermore, since 1 is a minimum of A, by Minkowski's convex body theorem, 
N(B) < 1/2. Now suppose that ae is a neighbor of 1 in A. Again, by Minkowski, 
we must have M(a) < A\1/2N(A). Also by Minkowski, we can choose a nonzero 
b E B (prime to p) such that lb(')I < (z\l/2N(B))1/n for 0 < i < n. For this b, we 
have 

M(b) < A\1/2N(B) < /\, 

and 

M(ab) < M(ca)M(b) < A\1/2N(A) . Al/2N(B) =i. 

Since ae = (ab)/b, and ab and b are in O(P), it follows that the set S in Theorem 4.7 
is contained in the subgroup of K* generated by the set T1. 
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By Minkowski, we can choose integral ideals Al,... , Ah whose norms are at 
most t1/2 forming a complete system of representatives for the class group. Con- 
sider the set T of ideals from Theorem, 4.7. By Minkowski, for 1 < j < h, and any 
P E T, there exists a minimum a E AiP with 

la"'~ I - l/N(Aj)N(P))/ < (i')1/n (O < i < n). 

Thus, we can take for the set S2 in Theorem 4.7 a subset of T2. 
The first assertion of the theorem now follows immediately from Theorem 4.7. 
Now consider the second assertion. As above, each element ar e Si that is a 

neighbor of 1 in the reduced ideal A = B-1 satisfies M(aE) < z\1/2N(A). We can 
express ar in the basis Q as 

at E ai Mi 
N(B) 

where each of the ai's are integers. It follows from Theorem 3.1 that lai/N(B)1 < 
zA1/2N(A), i.e., jail < A1/2. So we see that Eiaiw(') E T3. Also, it is clear 
that N(B) E T3, since N(B) < /1/2. Thus, ar can be written as the ratio of two 
elements of T3. 

It also follows from Theorem 3.1 that T2 C T3. This proves the second asser- 
tion. LI 

5. CONSTRUCTING A GENERATING SET 

In this section, we use the results of ?3 to derive an efficient algorithm that 
enumerates the coordinate vectors of all elements of 0 whose conjugate vectors lie 
in the region of Rn defined in ?4, and thus enumerates a generating set for (0)*. 

For 6 > 0 and x E Rn, consider the n-dimensional box 

8(xz) {= y E Rn: 1lX -Yll < 6}. 

For 6 > 1, consider the region 
n-i 

1Z(8) = {(Xo) ,Xn-1)T c Rn: ]J max{l, xill < 6 

Let A be the matrix in Theorem 3.1(2), which sends conjugate vectors to coor- 
dinate vectors, and for S c Rn let A[S] = {Ax: x E S}. 

Under the assumption of the ERH, Theorem 4.1, together with Theorem 3.1, 
implies that the nonzero images in 0 of the elements in the set 

n-1 

{ aiZe) e 0 : (ao,... , an-)T E A[R(zA) U 1(0, (,/)l/n)] n Zn} 
i=O 

generate the group (0)*. Thus, we have reduced our problem of constructing a 
generating set to that of enumerating all elements in the set 

A[R(A\) U B(0, (KA/)l/n) n Zn. 

Consider the cube 

y = {(Xo,. ..n-)T Rn: O < xi < 1/2}. 

Then the set of translates 

U= {y+x: x E 2 
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partitions R' into cubes whose sides are of length 1/2. 

Algorithm 5.1. This algorithm takes as input an integer B > 1 and the data 
(2.4) describing 0. It produces as output a set of vectors in Z' that contains 
A[tR(B)] n Zn 

1. Compute rational approximations A0,.. ., An-1 such that 

where 
~1 

68(B + 1/4)n~ 

Let A be the approximation to the matrix A in Theorem 3.1 obtained by 
replacing each entry Ai of A by the approximation Ai. 

2. For each cube Z in the set U that intersects 1Z(B), do the following: 
(a) Let z E Rn be the center of Z. 
(b) Compute x = Az. 
(c) Round each coordinate of x to the nearest integer, obtaining the vector 

a E Zn. 
(d) Output a. D 

Theorem 5.2. Algorithm 5.1 works correctly as specified. It can be executed in 
time 

B(n + log B)0(n) + (log / + log B)0(1). 

Proof. We first argue that the algorithm is correct. 
We can write A = A + D, where D is a matrix whose entries are bounded by e 

in absolute value. 
Let u E A[1Z(B)] n Zn. We show that u is one of the vectors output by the 

algorithm. 
Let u = Ay, with y e R4B). Let Z E U be the cube containing y, and let z be 

its center. We have 

flAz-uj - fl(A+D)z-Ayjl 
< flA(z - y)j + fjDzjj 
< 1/4 +?E(B + 1/4)n 

- 3/8. 

It follows that when the coordinates of the vector x = Az are rounded to integers, 
the resulting vector a must equal u. 

We next prove the running time bound. 
For step 1, we first obtain the minimal polynomial g E Q[X] of A. It is easy 

to see from Theorem 3.1 that the coordinates of Ai for 1 < i < n expressed in Q 
are rational numbers whose numerators and denominators (in reduced terms) are 
bounded in absolute value by O.(1). Using the multiplication table M, we can 
compute all of these coordinates in time (log A)O(1). Next, we can use Gaussian 
elimination to compute the coefficients of g, also in time (log A)O(1). We can 
then obtain approximations to the roots of g in time (log /\ + log B)0(1), using a 
polynomial-time rootfinding algorithm [21]. 

Thus, step 1 can be carried out in time (log \ + log B)0(1). 



CONSTRUCTING NONRESIDUES IN FINITE FIELDS 1323 

In what follows, all numerical computations involve "binary" rational numbers 
of the form x 2k, where x is an integer with x = (nB)0(1) and k = O(log(nB)). 

For step 2, we can enumerate the centers of the cubes Z E U that intersect 14(B) 
in the following way. To list the cubes that lie in the n-dimensional quadrant R'>0, 
we consider the points z = (zo, 1/4, ... ,1/4) as zo takes on the values 1/4, 3/4, 5/4, 
etc., until B(z, 1/4) falls completely outside 14(B). For each such z, we consider the 
points z' = (zo, z1, 1/4, ... , 1/4) as z1 takes on the values 1/4, 3/4, 5/4, etc., until 
B(z', 1/4) falls completely outside 14(B). And so on. We use a similar enumeration 
scheme for the other n-dimensional quadrants. 

With this enumeration scheme, the running time of step 2 is bounded by N 
(log B + n)O(l), where N is the number of cubes Z in U such that either Z itself 
or a cube adjacent to Z intersects 14(B). We then have 

N < 2n vol(14(B) + 13(0, 1)), 

where 

tR(B) + 13(01 1) = fu + v : u E R(B), v E B(0, I)}. 

It is easy to see that 

14(B) + 13(0, 1) c 1Z(2nB). 

In the proof of Theorem 6.5 in [16], it is shown that for any 6 > 1 

2n(n - 1 + log 6)n-1 
volp(1Z())?<8. (-) 

It follows that 

N < B(n + log B)0(n) 

and thus step 2 can be carried out in time 

B(n + log B)0(n) D 

Theorem 5.3. Assume the ERH. There is a deterministic algorithm with the fol- 
lowing properties. It takes as input an integer n > 1 and a prime pin, along with 
the data (2.4) describing 0. It produces as output a set of elements in O(P) whose 
image in (O)* is a generating set. The algorithm runs in time 

A\(log A)0(n) + A\K20(n) (log(A r;))0(1) 

Proof. We use Algorithm 5.1 to enumerate the set A[1Z(A)] n Zn. This gives the 
first term in the above running time. By Theorem 3.1, we have 

A[13(O, (IA)l/n)] C 1(0, (r,A)1/n) 

We can list all points in Zn that lie in this box in a straightforward fashion. This 
gives the second term in the above running time. O 

We can now prove the following theorem, which is the main result of this paper. 

Theorem 5.4. Assume the ERH. There is a deterministic algorithm with the fol- 
lowing properties. It takes as input an integer n > 1 and a prime p/n. It produces 
as output a model for Fpn together with a generating set for Fpn. The algorithm 
runs in time 
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Proof. We can construct our model for Fpn, using the algorithm of Fact 2.2, in 

time (nloglogp)0(1) (log p)2. Then by Theorem 5.3, we can construct a generating 

set in time 

( 1oglogp) (') (ogp)2(n-1) + no(n)(logP)2n (loglogp)O(l). 

In the first term, the factor (loglogp)0(n) is less than logp unless loglogp 

O(nlogn). Thus, the total running time is 

nO(n)(logp)2n(loglogp)O(l). L] 

6. ANOTHER ALGORITHM FOR CONSTRUCTING A GENERATING SET 

Theorem 5.4 is not the best possible. In this section, we very briefly sketch a 

faster algorithm. This algorithm, however, lacks the elegance and simplicity of the 

one presented in the previous section. 
The algorithm is based directly on Theorem 4.7, instead of Theorem 4.1. Con- 

sider the sets SI and S2 in Theorem 4.7. By Fact 4.4, parts (3) and (4), we can 

bound the cardinality of these sets as follows: 

#Si < hR(log A)O(n) < Al/2(logA)O(n) 

#S2 < hK < sA1/2(logA)O(n). 

Thus, 

#(SI U 52) < (n loglogp)0(n) . (logp)n+l. 

We might hope that we can enumerate the elements of S1 U S2 in time roughly 

proportional to the cardinality of this set. This is indeed the case. 

Using the algorithmic techniques of [8] and [10], we can construct the set of all 

reduced ideals, along with the set Si of all neighbors of 1 in these ideals, in time 

A1/2 (log A)0(n) 

assuming the ERH. 
From among these reduced ideals, we select a complete system A1,... , Ah of 

representatives for the class group. Again, using the algorithmic techniques of [8] 

and [10], we can construct the minima required for the set S2 in time 

A1/2(log A)O(n)s(log s + log A)0(1), 

assuming the ERH. 
In the above running time estimates, the ERH is used to allow fast deterministic 

factorization of polynomials modulo primes (see [19]). These factorizations are 

needed to factor rational primes in 0. 

It then follows that, assuming the ERH, we can construct a model for Fpn 
together with a generating set for F>n in time 

(nloglogp)?(n) . (Iogp)n+l 

We note that this faster algorithm requires space for A/1/2 (log A)O(n) + (logp)O(l) 

bits of working storage (not including the space for the output). The algorithm 

presented in the previous section requires space for only (log A + log p)O(l) bits of 

working storage. 
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7. CONCLUSIONS AND OPEN PROBLEMS 

We have presented a deterministic algorithm that, under the assumption of the 
ERH, constructs a generating set for F>n in time (nlogp)0(n). One potential 
area for future work is improving the cost of finding a guaranteed generating set 
(assuming the ERH, possibly using a probabilistic algorithm). A second area is 
removing unproven assumptions (ERH), either in the correctness or complexity 
analysis. A third area is developing an efficient deterministic search procedure for 
finding primitive roots in Fpn , for large p and n > 2 (assuming the ERH). 
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